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ORDINARY DUALITY VIS-A-VIS GEOMETRIC DUALITY

by
Elmor L. Peterson*

ABSTRACT. The ordinasry dual problem is characterized as an orthogonal
projection of the corresponding geometric dual problem--a projection that
can be obtained via a suboptimization. This characterization endows
gecmetric duality with certain strong _a.dva.ntagea over ordinary duality.

Keywords: Ordinary programming, gecmetric programming, dua.lity‘theory,
orthogonal projection, suboptimization.
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1. Introduction. The ordinary dual problem described herein was first
defined and studied by Falk [3]. It is an extension of the "Wolfe dual
problem" [9] and is more suitable for ordinary programming.

The geometric dual problem described herein was first defined
and studied by Peterson [4,5]. It is a géﬁeralization of the "extended
geametric dual problem" first defined and studied by Duffin and Peterson
in Chapter T of [2]. The ‘la.tter problem is, in turn, an extension of
the "posynominal programming dual problem" originally defined and studied
by Duffin and Peterson [1] and further explored by Duffin, Peterson and

Zener [2].

Although a characterization of the ordinary dual problem as an

. orthogonal projection of the corresponding geometric dual problem was

first announced in [4,5], a complete proof and its implications are being
given here for the first time.

This proof utilizes a (geometric programming) version of Fenchel's
duality theorem given by Rockafellar [8]. In doing éo, it also requires
some of the convexity theory in [8]--especially the theory having to
do with the "relative interior" (ri S) of an arbitrary convex set
S cEy (N-dimensional Euclidean space).

2. The primal problem. A problem that is sufficiently general to

encompass both the most general ordinary programming problem and the most

general gecmetric programming problem is given in section 2.2 of [5].
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Using the same notation and definitions, we can restate that

‘ problem in the following concise way.

PROBLEM A. Using the feasible solution set {

A
82 (k) eclxex, and g &' <0, 1€1)

: and the objective function value

8 o0y g # )
G(x,) = g, (x ) +§.8J(x KD

calculate both the problem infinmum

Mot SR S e A it

o= inf G(x,k)
(X,K)ES ¥

and the optimal solution set

ik ((x,k) € sIG(x,K) = 9}.

1

E
E
i
;»
k
»

Problem A is, by definition, the most general geametric pro- 3

~ -
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gramming problem, and example 8 on page 12 of (5] shows that it also

encompasses the most general ordinary programming problem.




3. The ordinary dual problem. The "ordinary Lagrangian" for problem A
is

A i
Lo(x,K))\) = G(x,«) +§ )‘151(" ¥
This Lagrangian gives rise to the following "ordinary dual problem."
PROBLEM B . Using the feasible solution set

8 finite}

A
T =(A€EE ,/A>0 and inf L (x,k5)\)
o o(I? = ,c)ec ©
xeX

and the objective function value

HO(A) 3 inf Lo(x,K;)\),
(x,k)ec
x€X

calculate both the problem supremum

v, - sup Ho()\)
7\€TO

and the optimal solution set

* A
T.= (€ 'rolno(x) =v,) -

Problem B is, of course, an extension of the "Wolfe dual problem"
[9]. It was initially defined and studied by Falk [3] and is the appropriate

dual problem for ordinary programming.
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k. The geometric dual problem. In terms of the notation and definitions

in section 3.3.2 of (5], the "geometric Lagrangian" for problem A is
2 J
L (x,659,0) = (x,y) - Hiy,A) - & k., (39) .
g g J73

This Lagrangian gives rise to the following "geometric dual

problem."

PROBLEM B. Using the feasible solution set

T2 (GA) edlye ¥, and hj(yj)go, j e}

and the objective function value
BN S, 6°) + Zulta)
I

calculate both the problem infimum

¥2 ine H()

(y,N\)eT

and the optimal solution set

™2 (G, € TlEl,n) = )
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A derivation of problem B from the Lagrangian Lg is given in

s Qe UL S

[6]. However, problem B was initially defined and studied in [4,5].

It is, of course, an extension of the posynomial programming dual problem

IO F s e

originally defined and studied by Duffin and Peterson [1] and further

explored by Duffin, Peterson and Zener [2].

SRR - 1© Lo it st

g 5. The key reformulation. The key to the most fundamental relation
A
k

between the corresponding dual problems Bo and B is to reformulate the

ordinary Lagrangian minimization (used to define the objective function

I-Io(7\) for problem Bo) as a special case of problem A. Since that minimi-
zation does not direcf]y involve the constraints g, (1) <0,1i€1I, it
can actually be reformulated as a special case of the unconstrained
version of problem A.

To obtain the unconstrained version of problem A, simply let
both index sets I and J be empty and drop the (now unnecessary) sub-

script O from the symbol go:Co. In addition, replace all remaining

e T —

symbols with .their script counterparts in order to avoid ambiguous

notation when carrying out the desired reformulation.

The resulting unconstrained version of problem A can be given the
following concise definition (in terms of the notation and definitions in

section 2.1 of [5]).

S IO MR SR A A e 5 i,

PROBLEM & . Using the feasible solution set

d2%ne,




calculate both the problem infimum

2 ine q@p
! 46J3

and the optimal solution set

34 {¢eﬁl;(4-) =9) .

Similarly, the geometric dual of problem & can be given the
following concise definition (in terms of the notation and definitions

in section 3.1.4 of [5]).

PROBIEM @. Using the feasible solution set

g2 nd;

calculate both the problem infimum

A
v2 ine Ay
}63’ 3
and the optimal solution set

a*% (’edL’;(}) = ¥) .

To reformulate the ordinary Lagrangian minimization as a special
case of problem &, simply let the function domain

Gy e i i A0 Ll A S i Sl 5t




S it S e i I S M R e S i

calculate both the problem infimm

A
9= inf 9 (¥
#<d

¢
X
é
[+
¢
.

QA s s e

and the optimal solution set

3
i

* A
2 .J g {’LEJIJ(’Q = @} .
; Similarly, the geometric dual of problem (@ can be given the
following concise definition (in terms of the notation and definitions
in section 3.1.4 of [51).
]
PROBLEM §. Using the feasible solution set ;,
3=nd,
calculate both the problem infimum #
3 A
‘ ¥ = inf 1(3)
ged
& and the optimal solution set
: J*A= [765“(?) =V} .
=

To reformulate the ordinary Lagrangian minimization as a special

case of problem &, simply let the function damain
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@%c = (6%xhel 0 egylxfec, ke OIuT; (k) e ¢}, 4€3)

and let the function wvalue

IR T i s i 5

b R

?(xo,xl,xJ,K;)\) - L (x,k3N) = g x°) + L g+(x'j,l< ) +Z g (x1).
£ o] ; 0 J J I i~

Also, let the cone

7AN 0 ¢ (0] J
N= ((x,x ,xJ,K) € Eh|(x ,xI,x ) €eXs K€ Eo(J)]’

The presence of A as a parameter in the resulting problem

will be indicated notationally by replacing the symbol @ with the

_' symbol @ (A). Moreover, the presence of A as a parameter in any
’ other entity will be indicated notationally in the same way.
} Now, problem @(A) consists of using the feasible solution set
Jé {(x,k) € clx € X}
i
Et to calculate both the problem infimum i
- £ ]
:4’ ,’:’ A ;
by £ B )= dnf L (x,k5)) i
R (x,x)ed - :3
& } f %
EL B . and the optimal solution set |

| ;

mE 470 2 () edln o) = 1 0.
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To determine the nature of the resulting dual problem @ (),
we need to compute both the conjugate transform j_(';k) :.8()\) of

the given function 3(-&) :(@ and the dual ? of the given cone 1

6. The resulting dual problem. To compute 1 (-s7) : (), first note that

l(yo:yI,yJ»B;k) = sup {<y°,x°) + & (yi,xi) + % (yJ,xJ)
' xo,xI,xJ,K)ee I J

+Zpk -g G0 -Zgiedk) -Tag 1))
Frdigoda T Sliaine g 15L

= sup [(yo,xo) - so(xo)] + 2 sup [(yi,xi)-xigi(xi)]

0 i Gl b
X €Co X €Ci

+ 2 sup [(y‘j,x‘j) + BJKJ - 'g;(x‘j,/(.)] ‘
§: 28 + J
(x ,KJ)EC:J

Consequently, (yo,yI,yJ,ﬂ) € () if and only if each term on the

right-hand side of the preceding equations is finite. Of course, the

first term is finite if and only if y° € D,y in which case the first
term is equal to ho(yo). The finiteness of the remaining terms can

be conveniently characterized with two lemmas.

1
i

The following lemma characterizes the finiteness of the terms
involving the index set I.

R | Leme A. Given that Ay >0, the suwp [(y',x'} - Ag, (x})] 1s finite ifand
1 xieci
only if (yi,)\i) € D;, in which case
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sup [rhxh) - g, M) = nrGtay) .

X €Ci

Proof. Simply observe that

& sup (yi,xi) ig 7\i=0
i
xeci

sup [(yi,xi)-xigi(xi)h{ A, GPA)  if A >0 and ¥t enD,
x €Ci :
+ o if Ki

>0 and y' ¢AD,

\
and then use the defining formula for h;::

-t

ol ] qoetd'

The next lemma characterizes the finiteness of the terms involving

the index set J.

Lemma B. The  sup [y, x) + ByKy - s;(xJ,KJ)] is finite if and
(XJ)KJ )€C;

only if both y'j € D;j and hJ(yd) + aJ < 0, in which case

sup [(yj,x") * 5de - gS(xJ,K s i B
(xJ,KJ)GC;

Proof. First, observe that
J *d
,j 8\1’; * [(yJ’x ) = ﬂd"d = EJ(x )KJ)]
(x ,KJGCJ
= sup [sup ((v),x9) + gk, - g (k) (k) € D)l

= sup [;a‘.,K‘1 + sup ((r’,xj) - s;(xJ,KJ)l(xJ,K ) € c;}]
KJZO <5

9




[ eup ((y?,x9) - sup (x3,a%) | sup (x), )< sm) 12 s
J J J
x a’ep, a’en,
= sup BJKJ'O'
=t sup [(yd x") -k.g, (x/k)xk, € c ) if K.>0
! e J J 3 J
- b'q
3 0 if K =0 and yjeﬁJ
* if K =0 and yj¢ﬁj
= S8sup BJKJ+ J =
K,>0 + o if K, >0 and y' ¢D
s J J
: J
Jhd(y‘j? if K, >0 and 3 €D, ]

where the final step makes use of the fact that the zero function with
domain b;j (the topological closure of D .j) is the conjugate transform

of the conjugate transform of the zero function with domain D ¥
note that the last expression is finite only if yJ €D 5 in which case

Now,
the last expression clearly

= sup [p

K, + K.h (yJ)].
KJ?‘O Jd J 3

But this expression is cbviocusly finite if and only if nJ(y*’) +8,<0,

in which case this expression is clearly zero q.e.d.

We have now shown that the function domain

10

-




B0 = (6°v"v8) e Bl e Ds G en), te;

v) €D, By € By anth(yJ)"-sJSO, JEI)
and we have also shown that the function value
A6ty o) = my0%) + Zuietay) = B
Moreover, elementary considerations show that the cone

?’ {(YOIYI:YJ)B) € EnI(YO:YI:VJ) €Y, =0}

Therefore, problem (B (A) consists of using the feasible solution set

JaS we Enl(:m\) € T)

to calculate both the problem infimum

A
¥(A) = inf  H(y,\)
g ()

and the optimal solution set

TN 2 v eI HGEN) = v

Hence, the duality theory relating problems I and @& can be
used to deduce important relations between the corresponding dual problems

Bo and B. .
hoh
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7. The fundamental relation. In view of the general duality theory in sectios

3.1k of [5], if the preceding dual problems (I(A) and @(A) _are consistent |

and have no duality gap, then

0= HO(M + \v(x) 3

in which event the negative -H (A) of the ordinary dual cbjective function

value H (A) is simply the (sub)infimm V(M) of the geometric dual ]

objective function value H(y,\) over y.

Thus, the set of all )\' for which the preceding dual problems
A(\) and B(\) are consistent and have no duality gap is of great interest.
It is, of caurée, a subset of both the ordinary dual fe;sible solution set
T_and an orthogonal projection

o

P e Eo(I)lj()‘) is not empty)
of the geometric dual feasible solution set T.
8. The main consequences. Primal problems A that exhibit minimally

useful relations of the preceding type (between their corresponding dual
problems B and B) can be characterlzed in the following way.

DEFINITION. Problem A is projectible from its_geometric dual problem B
to its ordinary dual problem B, if
T =A

12
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0 uno(x) + y(A) for each A € T, -

The preceding terminology is appropriate because the two defining relations
simply assert that (the epigraph of) the negative -H ,:T, of the
ordinary dual objective function HO:‘I‘O is just an orthogonsl projection
of (the epigraph of) the geometric dual objective function H:T.

The following proposition provides, in the context of closed
convex programming, a rathér weak condition (involving relative interiors)

that is sufficiently strong to guarantee the projectibility of problem A.

PROPOSITION I. If
(1) tboth the functions g,:C,, k € (0} UTI U J, and the cone X

are convex and closed,

(11) there exists a vector (x°,k°) such that

(a) x° € (ri X),

(®) “Ee (r1 c,) k€ (0} U I,
(e) (x°",f<3_) € (ri 05) yeu,
then

SO e

(I) problem A is projectible from its geometric dual problem B

to its ordinary dual problem B,
(II) the (sub)optimal solution set /f*(\) is not empty for each

sl latia o0

A €A

Ll '

13




Proof. First, note from the theory of relative interiors that problem
Q(\) nas a feasible solution (x°,k°) € o for each M. Then, note that
conclusions (I) and (II) are implied by (in fact, are equivalent to) the

statement

problem @ (A) has a finite infimum HO(A) if and only if problem @()\) :
has a feasible solution y € J (A), in which event O = Ho()\) +v(A) |
and J*Q) # 4.

.Now, observe that the preceding statement is, in turn, implied
by Corollary 3A on page 23 of [5] together with the (unstated) dual of
(Fenchel's) Theorem 5 on page 26 of [5] (which is itself proved as
Theorem 31."-& on page 335 of [8]). Consequently, we need only show that
the hypotheses of that corollarj- and theorem are implied by the hypotheses
of this proposition.

Toward that end, we first note that elementary (though tedious)
considerations show that 3(-;7\): @ inherits the convexity and closedness
of the g :C,, k€ (0) UIUJ, and that 4 inherits the convexity end
closedness of X. :

Finally, to show that (x0,k®) € (ri %) N (ri @), we first use

the formulas for X and @ to derive comparable formulas for (ri €)

and (ri @)--two derivations that make crucial use of the following basic
facts:
(A) (1 U) =U when U 4is a vector space,

’ n n
B) (r1v)=XI(r1 Vk) when V = X V, and the sets V, are convex.
. 1l 1

1k




Pact (A) 1s established on page 4l of [8), and fact (B) can be obtained
inductively from the formula at the top of page 49 of (8].
Now, the formula for % along with facts (A) and (B) implies that

5 (1‘1 x) = ((Xo}xI)xJ:K) € Enl(xo.'xI!xJ) € (ri X); K€ EO(J)] i

Moreover, the formula for & along with facts (A) and (B) implies that

e o e e e e S i

|
|
E‘ (r1 @ = (2,x%,x’,k) € E"ka € (ric), ke (0) UT; (I k.)€ (rt C;),JGJ] 2

In particular then, the hypothesized vector (x ,¢°) € (ri%) N (ri @).

qg.e.d.

The following proposition brings to light the most significant
implications of the projectibility of problem A.

2 gl ket o e

PROPOSITION II. If problem A is projectible from geometric dual
problem B to its ordinary dual problem Bo » then the ordinary dual

supremm V¥, 1is finite if and only if the geometric dual infimum V 1

is finite; E which case

0=*°"'W

.

* # '
T, 2 0\ €E°(I)|(y,)\) €T forsame y€E], !

with equality holding if and only if the (sub)optimal solution set

T(?x) 1s not empty for each \ € T%.

15
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Proof. The defining equation for the set A and the defining relations
for problems B and (B(\) readily imply that

¥ = inf v()) (1)
A

and that

T = (7N EDNEA ¥A) =¥, andye T ). (2)

Now, in view of the defining relations for problem Bo , the

projectibility of problem A ocbviously implies that

0=y + inf ¥(A) (3)
AeA ;
and that
T - ealvi) = vy, )

with equation (1) also having been used in the derivation of equation (4).
Clearly, the initial conclusions of the proposition are implied

by equations (1) and (3), while the final conclusions are implied by

equations (2) and ). q.e.d.

Taken together, Propositions I and II have the following important
corollary.

16
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*
T = (A €E )l @A) € T" for some y).

The scope of Corollary 1l can, of course, be inferred from an
examination of the hypotheses of Proposition I. In particular, since
it is widely known that neither ordinary duality nor geametric duality
is of much significance in nonconvex programming, the convexity of both
gk:Ck, k€ (0JUIUJ and X is not an unreasonably strong assumption.
Furthermore, since there seems to be no significant convex programming
problems A involving either a nonclosed function gk: Ck or a nonclosed
cone X, the closedness of both gk:ck, k€ (O)UIUJ and X is
also not an unreasonably strong assumption. (Actual]s, the replacement
of either a nonclosed g:C, ora nonclosed X by its "closure" has
a known, usually minor, effect on the problem infimum ¢ and optimal
solution set S¥*.) Consequently, the true scope of Corollary 1
actually hinges on how frequently hypothesis (ii) of Proposition I is
satisfied in the context of (closed) convex programming--a question that
will now be examined.

For many important problems A, the cone X 1is in fact a vector
space; in which case fact (A) asserts that (ri X) = X. Hence, to treat
such problems, it is convenient to replace condition (a) in hypothesis (ii)

with the condition

17
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(a') X 1is a vector space, and x° € X,
which clearly does not disturb the validity of Proposition I and
Corollary 1.

For many important problems A, the set ('.'k
space Enk, k € {0} U I; in which case fact (A) asserts that

is the whole vector

(ri Ck) = Enk, k € {0} U I. Hence, to treat such problems, it is
convenient to replace condition (b) in hypothesis (ii) with the condition
(b') ck=Enk ke (0}JUT, '
which clearly does not disturb the validity of Proposition I and
Corollary 1.

For many important problems A, the index set J is empty; in which
case the condition (x 9 ,K: ) e (ri C;), J € J 1is vacuously satisfied.
Hence, to treat such probleﬁs » it is convenient to replace condition (c)

in hypothesis (ii) with the condition

(e") J is empty,

which clearly does not disturb the validity of Proposition I and
Corollary 1.

For many important problems A, conditions (a'), (b') and (c*)
are all satisfied; in which case the vector x° = 0 obviously satisfies
conditions (a), (b) and (c) in hypothesis (ii). Hence, to treat such
problems, it is convenient to replace hypothesis (ii) with the hypothesis

i
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(11') X 1is a vector space; C, = Enk, k€ (0} UTI; end J is empty,
which does not, of course, disturb the wvalidity of Proposition I and

Corollary 1.

Some very important problems A (discussed in [5] and the references
cited therein) that obviously satisfy hypothesis (ii') are: posynomial
programming problems, quadratic programming problems (with either linear
or quadratic constraints), linear regression problems (with constraints
that bound norms), and optimal location problems. Although the most
general ordinary programming problem (example 8 on page 12 of [5]) does
not generally satisfy hypothesis (ii'), it is not difficult to see that
it does satisfy the original hypothesis (ii).

9. Some important implications. We have just observed that the conclusion

to Corollary 1 is valid for many (if not all) convex programming problems
of interest. For all such problems A, the corresponding ordinary dual
problem Bo can be obtained by orthogonally projecting the corresponding
geometric dual problem B viae a suboptimization--a property that endows
geometric duality with the following strong advantages over ordinary
duality.

For many important problems A (including all posynomial programming
problems, all quadratic programming problems, all linear regression
problems, and all optimal location problems), the corresponding geometric
dual problem B can be expressed in terms of formulas that are as elementary

as the formulas expressing the primal problem A. The fact that the

19
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~ corresponding ordinary dual problem Bo almost never has such an elementary

representation is just a reflection of the fact that any suboptimization
of a function represented in terms of elementary formulas rarely produces
a function that can be represented in terms of elementary formulas.

Of course, the geometric dual problem B has an independent vector
variable y that is not present in the corresponding ordinary dual
problem Bo' However, there is no a priori reason why minimizing H(y,\)
over y should be any more difficult than minimizing L, (x,k;2) over
(x,4). More importantly, there is also no a priori reason why minimizing
H(ysA) over y and A Jointly should be any more difficult than first
minimizing Lo(x,K;k) over (x,k). and then maximizing the result over
A; in fact, the latter maximinimization looks much more formidable than
the former joint minimization.

Finally, the geometric dual problem B sensitizes more parameters
in its primal problem A than does the corresponding ordinary dual problem
Bo’ As indicated in sections 3.1.5 and 3.3.5 of [5], this fact makes
geametric duality more powerful than ordinary duality for parametric
programming and post-optimality analysis.

In concluding, it is worth mentioning that the preceding duality

between suboptimization and parameter deletion is generalized and more

thoroughly studied in [7].

el
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